

for the Smart Distributed System TECHNICAL DATA

0711

Description

The Holjeron BusBlock Digital I/O Module is designed to handle small amounts of digital inputs and/or outputs in a limited amount of space. The BusBlock Digital I/O Module has 8 points. Each point can be configured as either an input or an output.

Field terminations are captive screw terminals.

Other BusBlock products include analog input, analog output and frequency modules.

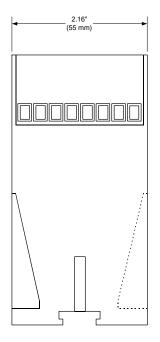
Warranty/Remedy

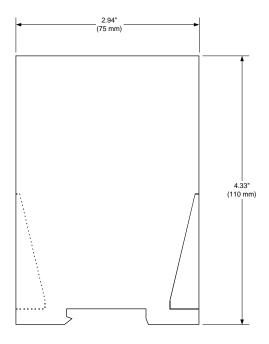
Seller warrants its products to be free from defects in design, material and workmanship under normal use and service. Seller will repair or replace without charge any such products it finds to be so defective on its return to Seller within 18 months after date of shipment by Seller. The foregoing is in lieu of all other expressed or implied warranties (except title), including those of merchantability and fitness for a particular purpose. The foregoing is also purchaser's sole remedy and is in lieu of all other guarantees, obligations, or liabilities or any consequences incidental, or punitive damages attributable to negligence or strict liability, all by way of example.

While Holjeron provides application assistance, personally and through our literature, it is up to the customer to determine the suitability of the product in the application.

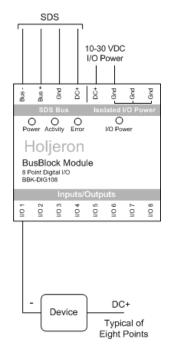
All information contained herein, including illustrations, specifications and dimensions, is believed to be reliable as of the date of publication, but is subject to change without notice.

Specifications


Part Number	8 Point Digital I/C) Module	BBK-DIG108	
Electrical	SDS Voltage Range		11-25 VDC	
Current Consumption Data Rates			60 mA	
			125, 250, 500 and 1000 kbps	
Inputs	Туре		Current Sourcing (PNP devices)	
	Number		Up to eight (8)	
	Voltage		10-30 VDC	
	Maximum Curren	t	20 mA per input	
	Isolation		1500 Vrms	
Outputs	Туре		Current Sinking (NPN Loads)	
	Number		Up to eight (8)	
	Voltage		10-30 VDC	
	Maximum Curren	t	2.5 Amps per output	
	Isolation		1500 Vrms	
Environmental	Temperature	Storage	-40° to 85° C (-40° to 185° F)	
		Operating	-25° to 70° C (-13° to 158° F)	
	Humidity		5-95% RH, non-condensing	
	Vibration		2G at 10 to 500 Hz	
	Shock		10G	
Physical	Dimensions		2.95" H x 2.17" W x 4.33" D	
	Weight		12 oz	
	Color		Bone Gray	
	Case Material		Polycarbonate	
	Mounting		DIN Rail or foot mount	
	Terminations		Cage Clamp Screw Terminal	
	Indication	Power	Green	
		Error	Red	
		SDS	Green	
		I/O Power	Green	



for the Smart Distributed System
TECHNICAL DATA


Page 2

Dimensions

Wiring

for the Smart Distributed System TECHNICAL DATA

Page 3

Configuration Tools

A BusBlock module can be configured using several tools. The information below summarizes the configuration tools available and hardware requirements for each tool.

Holjeron Device Manager for SDS

Requires an HSIM Portable (RS-232 to CAN converter) that connects to the serial port of a personal computer. The bus **or** the HSIM Portable must have power.

Honeywell hand-held activator

The Honeywell activator may not supply enough power by itself. The SDS bus might require external power to be applied.

Think & Do Software

Requires a Honeywell PC Interface Card with separate bus power. Follow the instructions for installing the SDS Driver in I/O View.

Quick Start

The following steps are the minimum steps to configure BusBlock module. Default values are shown in bold type-face.

Set Device Address

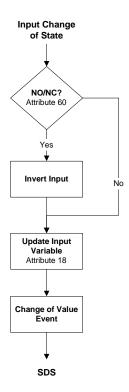
Using one of the tools described above, change the device address from the default. All units are shipped from the factory as address 126.

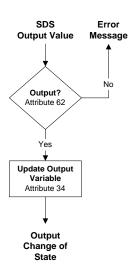
Note

Set the address before attaching any component to a complete bus. This will help prevent duplicate addresses on a bus.

Tag Name

Tag Name (attribute 56) is a 32-character string that the user can enter to describe the functionality and/or location of each channel of the BusBlock Digital I/O Module.


for the Smart Distributed System TECHNICAL DATA


Page 4

Operation

BBK-4055-4

The BusBlock Digital I/O module reads inputs and writes outputs using the processes defined below.

Input NO/NC

The BusBlock Digital I/O Module can be configured to invert the state of an incoming input point by turning on a bit in **Input NO/NC** (attribute 60).

Input Variable

Attribute 18 functions as the input attribute for the BusBlock Digital I/O Module. Whenever an event is generated that reports the state of inputs, the data in attribute 18 will be passed.

Note

When using a packaged control system, such as Think & Do Software, it is not necessary to explicitly read input and output variables. The SDS I/O Driver and Interface Card perform this function. All that is required is to map inputs and outputs as described in the software user manual.

Input Event Mode

Most systems will require a BusBlock I/O Module to generate an event whenever one or more inputs change state. This requires the **Unsolicit Mode (attribute 6)** be enabled by setting its value to **1**. Other options are to disable change of value events (Unsolicit Mode = 0) or use the **Cyclic Timer (Attribute 10)** by setting it to some non-zero value. The Cyclic Timer will transmit the input variable on an interval equal to the value in the Cyclic Timer attribute times 10 milliseconds (0.01 seconds).

Output Configuration

Each point on the BusBlock Digital I/O Module can be used as an input or an output. By default, each point is an input. Configuring a point as an output requires setting a corresponding bit to a value of 1 in the **Output Mast (attribute 62)**. The table below lists each bit and its associated numeric value. Adding the values for each bit that is to be used as an output will provide a numeric entry for the attribute value.

I/O Point	Value
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128

For example, if the first four points are to be used as outputs the value for the attribute would be 15 (1+2+4+8).

Output Variable

Attribute 34 functions as the output attribute for the BusBlock Digital I/O Module. Whenever the host controller changes the state of an output it is writing to attribute 34.

BBK-4055-4 Page 5

BusBlock Digital I/O Module

for the Smart Distributed System TECHNICAL DATA

Diagnostics

The Diagnostics Register (attribute 9) is two bytes and contains the minimum diagnostics required for the Smart Distributed System, plus additional diagnostics specific to the BusBlock Digital I/O module.

Diagnostic Register Bit Definitions Byte 0

Bit	Name	Description
0	CHKSUM	ROM checksum error
1	WDOG	Output watchdog timer expired
2	BUSOFF	Off us communications error
3	DEVERR	Fatal component error
4	NODE	Missing node detected
5	RSVD	Reserved
6	RSVD	Reserved
7	EPRM	EEPROM error de- tected

Diagnostic Register Bit Definitions Byte 1

Bit	Name	Description
0	SRVLIFE	Service Life exceeded
1	RSVD	Reserved
2	IOERR	I/O error
3	RSVD	Reserved
4	RSVD	Reserved
5	RSVD	Reserved
6	RSVD	Reserved
7	RSVD	Reserved

SDS host controllers are equipped to receive a diagnostic event, then automatically obtain the information from the **Diagnostic Register (attribute 9)**. Consult the documentation for the host controller being used to determine how errors are handled.

CHKSUM

A ROM checksum error is generated on power up if there is a memory error test.

WDOG

The WDOG diagnostic occurs whenever the **Output Watchdog Timer (attribute 50)** times out.

The Output Watchdog Timer is reset whenever the BusBlock module receives a message over SDS. If a message is not received in the time entered any point configured as an output will be set to the state for that bit in the NO/NC (attribute 60).

The Output Watchdog Timer is entered in increments of 10 milliseconds (0.01 seconds). For example, a value of 100 equals 1 second.

BUSOFF

The CAN controller on the BusBlock module counts error messages. Every error message increments a counter by 8, every good message decrements the counter by 1. If the counter reaches 128 then the module will go BUSOFF, and will need to be reset by the host controller.

DEVERR

The DEVERR diagnostic bit will be set if a fatal error is detected within the component.

NODE

The host controller will report the node is missing using the NODE bit.

EPRM

The EPRM error will occur when the microprocessor on the BusBlock module is unable to read or write EEPROM.

SRVLIFE

BusBlock modules are equipped with two attribute settings for managing the service life of the module. The first, Service Time (attribute 63) is the number of hours the module has been in operation. The second, Service Life (attribute 64) is set by the user, and is the number of service hours before the unit requires maintenance and/or replacement. When the Service Time value reaches the Service Life setting then an SRVLIFE diagnostic is transmitted.

IOERR

The IOERR diagnostic is enabled when the microprocessor on the BusBlock encounters communication errors with the digital I/O controller.

for the Smart Distributed System
TECHNICAL DATA

Page 6

Attributes

ID	Description	R/W	Data Type	Size	Count	Default
0	Network Data Descriptor	R	Unsigned	Byte	3	12h,01h,07h,22h,81h,07h
1	Baud Rate	R	Unsigned	Byte	1	0 [autobaud]
2	Object Model	R	Unsigned	Byte	5	1, 41, 5, 2, 2
3	Vendor Id	R	Unsigned	Word	1	9 [Holjeron]
4	Logical Address	R	Unsigned	Byte	1	125
6	Un/solicited Mode	W	Boolean	Undef	1	1
7	Software Version	R	Character	Undef	12	
8	Diagnostic Counter	R	Unsigned	Byte	1	
9	Diagnostic Register	W	Unsigned	Byte	2	
10	Cyclic Timer	W	Unsigned	Word	1	0
11	Serial Number	R	Unsigned	Long	1	
12	Date Code	R	Character	Undef	4	
13	Catalog Listing	R	Character	Undef	32	BBK-DIG108
14	Vendor	R	Character	Undef	32	Holjeron
15	Description	W	Character	Undef	32	8 Point Digital I/O
18	Input Variable	R	Boolean	Undef	8	
34	Output Variable	W	Boolean	Undef	8	
50	Output Watchdog Timer	W	Unsigned	Word	1	0 [disabled]
55	Manufacturing Codes	R	Unsigned	Byte	1	0
56	Tag Name	W	Character	Undef	32	
60	NO/NC	W	Boolean	Undef	8	00h
62	Output Mask	W	Boolean	Undef	8	00h
63	Service Time	R	Unsigned	Word	1	
64	Service Life	W	Unsigned	Word	1	5000

Actions

ID	Description	Request Data	Response Data
0	NOOP		
1	Change Address	New logical address	
2	Self Test		
6	Clear All Errors		
8	Enroll Logical Device		Vendor Id, Serial Number
10	Change Baud Rate	New baud rate (04)	
51	Force State	Input Variable	
52	Unforce State		
53	Read Attribute Descriptor	Attribute Id	Attribute Id, Attribute Descriptor
57	Password	Password	
60	Reset Factory Defaults		

Events

ID	Description	Event Data
0	Diagnostic Event	Number of diagnostic bits set in Attribute 9
3	End of Timer	Attribute, Input Variable
6	Change of Value	Attribute, Input Variable
7	NOOP	