

for the Smart Distributed System

BBK-4054-6 Updated: 10-12-2018 **TECHNICAL DATA**

Description

The Holjeron BusBlock Frequency Input Module is designed to handle frequency inputs in a limited amount of space. The BusBlock Frequency Input Module has four channels, with each channel using bus power. Each input can be either a separate SDS address, or can be configured to be four embedded objects within a single SDS address. Field terminations are captive screw terminals.

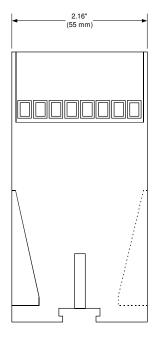
Other BusBlock products include an eight point configurable digital module; as well as analog input and output modules.

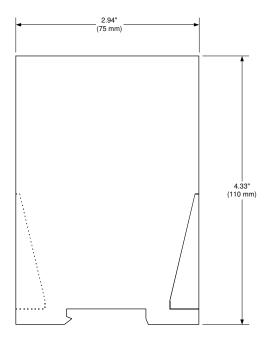
Warranty/Remedy

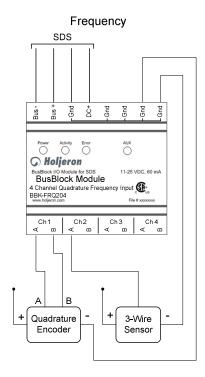
Seller warrants its products to be free from defects in design, material and workmanship under normal use and service. Seller will repair or replace without charge any such products it finds to be so defective on its return to Seller within 18 months after date of shipment by Seller. The foregoing is in lieu of all other expressed or implied warranties (except title), including those of merchantability and fitness for a particular purpose. The foregoing is also purchaser's sole remedy and is in lieu of all other guarantees, obligations, or liabilities or any consequences incidental, or punitive damages attributable to negligence or strict liability, all by way of example.

While Holjeron provides application assistance, personally and through our literature, it is up to the customer to determine the suitability of the product in the application.

All information contained herein, including illustrations, specifications and dimensions, is believed to be reliable as of the date of publication, but is subject to change without notice.


Specifications


-росповно				
Part Number	4 Channel Frequenc	cy Input Module	BBK-FRQ204	
Electrical	SDS Voltage Range)	11-25 VDC	
	Current Consumption	n	25 mA @24VDC	
	Data Rates		125, 250, 500 and 1000 kbps	
Inputs	Туре		Quadrature Encoder or Magnetic	
	Number		Four (4)	
	Maximum Frequenc	:y	30 KHz	
	Voltage	•	5-30 VDC	
	Maximum Current		20 mA per input	
Environmental	Temperature	Storage	-40° to 85° C (-40° to 185° F)	
		Operating	-25° to 70° C (-13° to 158° F)	
	Humidity		5-95% RH, non-condensing	
	Vibration		2G at 10 to 500 Hz	
	Shock		10G	
Physical	Dimensions		2.95" H x 2.17" W x 4.33" D	
	Weight		8 oz	
	Color		Bone Gray	
	Case Material		Polycarbonate	
	Mounting		DIN Rail or foot mount	
	Terminations		Cage Clamp Screw Terminal	
	Indication Power		Red-Green LED	
	(details on page 4) Activity		Red-Green LED	
		Error	Red-Green LED	
Certifications	CSA		C22.2 N0. 14-10	
	UL		508 (17 th Edition)	


TECHNICAL DATA BBK-4054-6 Page 2

Dimensions

Wiring

for the Smart Distributed System

BBK-4054-6 Page 3 **TECHNICAL DATA**

Configuration Tools

Holjeron ZTC-F64 Multi-Config Tool (ZTC-F64-DOTS)

Holjeron offers a configuration tool that connects to the USB port of a personal computer and 24V power, either from the Bus or a dedicated power supply. This tool can be used to configure or master an SDS Network, a ViaBus network, or Holjeron's Zonelink.S serial communication for multi-zone MDR Controls.

Legacy Configuration Tools:

These tools below (and others) can be used for configuration, but are no longer sold or supported:

Holjeron HSIM Portable Configuration Tool for SDS (HSM-PTB101)

Honeywell hand-held activator

Honeywell Think & Do Software using Holjeron's PCI Interface Card to communicate with a PC.

Quick Start

The following steps are the minimum steps to configure BusBlock module. Default values are shown in bold.

Baud Rate

Baud rate selections are as follows:

0 = Autobaud

1 = 1000 kbps

2 = 500 kbps

3 = 250 kbps

4 = 125 kbps

Set Device Address

Using one of the tools described above, change the device address from the default. All units are shipped from the factory as address 123-126.

Note

Set the address before attaching any component to a complete bus. This will help prevent duplicate addresses on a bus.

Channel Configuration

If using less than four channels, set the **Number of Channels (attribute 58)** to the appropriate value. Legal entries are 1, 2, 3 and 4.

Each channel can also be configured as an embedded object within a single SDS address. This requires an SDS master that understands how to communicate with embedded objects.

Enable Objects (attribute 59), when set to a value of 1, each channel is configured as an embedded object within a single SDS address.

Note

Changes to attributes 58 or 59 require power to be cycled to the module before changes take effect.

Tag Name

Tag Name (attribute 56) is a 32-character string that the user can enter to describe the functionality and/or location of each channel of the BusBlock Frequency Input Module.

for the Smart Distributed System

BBK-4054-6 Page 4 **TECHNICAL DATA**

LED Diagnostic Indicator Patterns

Current (Third) Generation (Rev 6+)

- Third Generation modules have Red-Green LEDs for all indicators.

PWR	SDS	ERR	AUX	Indication
OFF	OFF	OFF	OFF	OFF (DC+ is less than 8 volts)
SG	SG	SG	SG	1st LED Test Pattern (Third Gen) (All Green segments ON)
SR	SR	SR	SR	2nd LED Test Pattern (Third Gen) (All Red segments ON)
* SR	SR	SR	OFF	* Waiting for DC+ to reach SDS minimum of 11V (User never sees if normal start-up)
* SR	SR	OFF	OFF	* Waiting for valid EEPROM access (User never sees if normal start-up)
SG	OFF	FG	OFF	Waiting to Autobaud (Third Gen) (Not seen if fixed rate is used.)
SG	OFF	SG	SG	NORMAL CONDITION - Nothing to transmit on the CAN bus
SG	IG	SG	SG	NORMAL CONDITION - Trying to transmit on the CAN bus
SG	OFF	FR	SG	Nothing to transmit on the CAN bus and minor diagnostic bit(s) set
SG	IG	FR	SG	Trying to transmit on the CAN bus and minor diagnostic bit(s) set
SG	OFF	SR	SG	Not transmitting on the CAN bus and MAJOR diagnostic bit(s) set
SG	IG	SR	SG	Trying to transmit on the CAN bus and MAJOR diagnostic bit(s) set
* SG	SFR	SR	SG	* BUS OFF Condition (SDS LED solid or flashing red only <i>during</i> BUS OFF condition)

^{*} These patterns available on units manufactured after June 2015, as identified by Serial Number (2015182X or higher)

OFF = LED is OFF

SG = Solid Green

SR = Solid Red

FG = Flashing Green

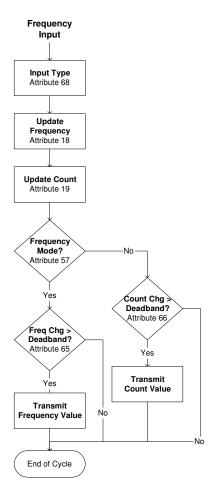
FR = Flashing Red

SFR = Solid OR Flashing Red

IG = Intermittent Green

FR = Flashing Red

I/O = If AUX is Solid Green indicates that Power for I/O is Present



for the Smart Distributed System

BBK-4054-6 Page 5 **TECHNICAL DATA**

Operation

The BusBlock Frequency Input module converts frequency signals using the process defined below.

Input Range

The BusBlock Frequency Input Module can be configured to accept pulses, quadrature inputs or magnetic inputs through the **Input Range (attribute 68)**. The counting function is determined by setting the appropriate value from the table below:

Value	Input A	Input B
0	Count Up	Disabled
1	Magnetic Pickup	Disabled
2	Count Up	Count Direction
3	Count Up	Count Down
4	Count Up	Count Up
5	Quadrature A	Quadrature B

Data Mode

The BusBlock Frequency Input Module can be configured to transmit either a frequency value or an actual count. The frequency value (in Hertz) is enabled as the input variable by setting the **Data Mode** (attribute 57) to 1. Setting the Data Mode to 2 causes the module to transmit count data to the host controller. A value of 3 enables both frequency and count to transmitted as input variables.

Note

When using a packaged control system, such as Think & Do Software, it is not necessary to explicitly read input and output variables. The SDS I/O Driver and Interface Card perform this function. All that is required is to map inputs and outputs as described in the software user manual.

Frequency Variable

Attribute 18 functions as the frequency variable for the BusBlock Frequency Input Module. Whenever an event is generated that reports the frequency, the data in attribute 18 will be passed.

Frequency Deadband

A Frequency Deadband (attribute 65) can also be set. This will limit events from being sent unless the input variable changes at least as much as the value entered in the Change of Value Deadband. This prevents insignificant changes in the input variable from generating events on the bus. The default value for the Frequency Deadband is 16.

Count Variable

Attribute 19 functions as the count variable for the BusBlock Frequency Input Module. Whenever an event is generated that reports the count, the data in attribute 19 will be passed.

Count Deadband

A Count Deadband (attribute 66) can also be set. This will limit events from being sent unless the count variable changes at least as much as the value entered in the Count Deadband. This prevents insignificant changes in the count value from generating events on the bus. The default value for the Count Deadband is 256.

Input Event Mode

Most systems will require a BusBlock I/O Module to generate an event whenever one or more inputs change state. This requires the **Unsolicit Mode (attribute 6)** be enabled by setting its value to 1, 2 or 3. A value of 1 enables changes in frequency to transmit an event, a value of 2 changes in count, and a value of 3 enables both variables to transmit change of value events. The default value for the Unsolicit Mode is **3**.

Other options are to disable change of value events (Unsolicit Mode = 0) or use the **Cyclic Timer (Attribute 10)** by setting it to some non-zero value. The Cyclic Timer will transmit the input variable on an interval equal to the value in the Cyclic Timer attribute times 10 milliseconds (0.01 seconds).

for the Smart Distributed System

BBK-4054-6 Page 6 TECHNICAL DATA

Diagnostics

The Diagnostics Register (attribute 9) is two bytes and contains the minimum diagnostics required for the Smart Distributed System, plus additional diagnostics specific to the BusBlock Frequency Input module.

Diagnostic Register Bit Definitions Byte 0

Bit	Name	Description
0		Reserved
1		Reserved
2	BUSOFF	Bus off communications
		error
3		Reserved
4		Reserved
5		Reserved
6		Reserved
7	EPRM	EEPROM error detect-
		ed

Diagnostic Register Bit Definitions Byte 1

Bit	Name	Description
0	SRVLIFE	Service Life exceeded
1		Reserved
2		Reserved
3	SDSPWR	SDS Supply Voltage
		Out of Range (11-27V)
4	LOLIM	Low Limit
5	HILIM	High Limit
6	CANOVRN	CAN Overrun
7		Reserved

SDS host controllers are equipped to receive a diagnostic event, then automatically obtain the information from the **Diagnostic Register (attribute 9)**. Consult the documentation for the host controller being used to determine how errors are handled.

BUSOFF

The CAN controller on the BusBlock module counts error messages. Every error message increments a counter by 8, every good message decrements the counter by 1. If the counter reaches 128 then the module will go BUSOFF, and will need to be reset by the host controller.

EPRM

The EPRM error will occur when the microprocessor on the BusBlock module is unable to read or write EEPROM.

SRVLIFE

BusBlock modules are equipped with two attribute settings for managing the service life of the module. The first, **Service Time** (attribute 63) is the number of hours the module has been in operation. The second, **Service Life** (attribute 64) is set by the user, and is the number of service hours before the unit requires maintenance and/or replacement. When the Service Time value reaches the Service Life setting then an SRVLIFE diagnostic is transmitted.

SDSPWR

This diagnostic is set when SDS bus voltage falls below the required level of 11 VDC.

LOLIM

A LOLIM diagnostic is generated when the scaled input value is at or below the Low Limit set in attribute 69.

HILIM

A HILIM diagnostic is generated when the scaled input value is at or above the High Limit set in attribute 71.

CANOVRN

The CAN Overrun error is generated when the buffer is overloaded. Check the SDS bus for bad devices or poor connections

Attribute 54 - CAN Error Status Codes

- 0 No error
- 1 Stuff error
- 2 Form error
- 3 Acknowledgement error
- 4 Bit recessive error
- 5 Bit dominant error
- 6 CRC error
- 7 reserved

BusBlock Frequency Input Module for the Smart Distributed System

TECHNICAL DATA Page 7 BBK-4054-6

Attributes

ID	Description	R/W	Data Type	Size	Count	Default
0	Network Data Descriptor	R	Unsigned	Byte	3	18,04h,40h
1	Baud Rate	R	Unsigned	Byte	1	0 [autobaud]
2	Object Model	R	Unsigned	Byte	5	1, 42, 5, 5, 2
3	Vendor Id	R	Unsigned	Word	1	9 [Holjeron]
4	Logical Address	R	Unsigned	Byte	4	125, 124, 123, 122
6	Un/solicited Mode	W	Boolean	Undef	2	3
7	Software Version	R	Character	Undef	12	
8	Diagnostic Counter	R	Unsigned	Byte	1	
9	Diagnostic Register	W	Unsigned	Byte	2	
10	Cyclic Timer	W	Unsigned	Word	1	0 [disabled]
11	Serial Number	R	Unsigned	Long	1	
12	Date Code	R	Character	Undef	4	
13	Catalog Listing	R	Character	Undef	32	BBK-FRQ204
14	Vendor	R	Character	Undef	32	Holjeron
15	Description	W	Character	Undef	32	4 Channel Frequency Input
18	Frequency Variable	R	Signed	Word	1	
19	Count Variable	R	Signed	Long	1	
54	CAN Error Status Code	R	Unsigned	Byte	1	
55	Manufacturing Codes	R	Unsigned	Byte	1	0
56	Tag Name	W	Character	Undef	32	
57	Data Mode	W	Boolean	Undef	2	1 [Frequency]
58	Number of Channels Used	W	Unsigned	Byte	1	4
59	Enable Object Mode	W	Boolean	Undef	1	0
63	Service Time	R	Unsigned	Word	1	
64	Service Life	W	Unsigned	Word	1	5000
65	Frequency Deadband	W	Unsigned	Word	1	16
66	Count Deadband	W	Unsigned	Word	1	256
68	Input Range	W	Unsigned	Byte	1	0

Actions

ID	Description	Request Data	Response Data
0	NOOP		
1	Change Address	New logical address	
2	Self Test		
6	Clear All Errors		
8	Enroll Logical Device		Vendor Id, Serial Number
10	Change Baud Rate	New baud rate (04)	
51	Force State	Input Variable	
52	Unforce State		
53	Read Attribute Descriptor	Attribute Id	Attribute Id, Attribute Descriptor
57	Password	Password	
60	Reset Factory Defaults		

Events

ID	Description	Event Data
0	Diagnostic Event	Number of diagnostic bits set in Attribute 9
3	End of Timer	Attribute, Input Variable
6	Change of Value	Attribute, Input Variable

for the Smart Distributed System

BBK-4054-6 Page 8 **TECHNICAL DATA**

Legacy LED Diagnostic Indicator Patterns

Second Generation (Rev 2 - Rev 5)

- Second Generation modules have Red-Green LEDs for all indicators.

PWR	SDS	ERR	Indication
OFF	OFF	OFF	OFF (DC+ is less than 8 volts)
SG	SG	SG	1st LED Test Pattern (Second Gen)
SG	SR	SR	2nd LED Test Pattern (Second Gen)
SG	OFF	FG	Waiting to Autobaud (Second Gen) (Not seen if fixed rate is used.)
SG	OFF	SG	NORMAL CONDITION - Nothing to transmit on the CAN bus
SG	IG	SG	NORMAL CONDITION - Trying to transmit on the CAN bus
SG	OFF	FR	Nothing to transmit on the CAN bus and minor diagnostic bit(s) set
SG	IG	FR	Trying to transmit on the CAN bus and minor diagnostic bit(s) set
SG	OFF	SR	Not transmitting on the CAN bus and MAJOR diagnostic bit(s) set
SG	IG	SR	Trying to transmit on the CAN bus and MAJOR diagnostic bit(s) set

OFF = LED is OFF

SG = Solid Green

SR = Solid Red

FG = Flashing Green

FR = Flashing Red

SFR = Solid OR Flashing Red

IG = Intermittent Green

FR = Flashing Red

I/O = If AUX is Solid Green indicates that Power for I/O is Present

for the Smart Distributed System

BBK-4054-6 Page 9 **TECHNICAL DATA**

Legacy LED Diagnostic Indicator Patterns

First Generation - (Rev 0 - Rev 1)

- First Generation modules have Green LEDs for PWR, SDS, and AUX and Red LED's for ERR indication.

PWR	SDS	ERR	Indication
OFF	OFF	OFF	OFF (DC+ is less than 8 volts)
SG	OFF	OFF	NORMAL CONDITION - Not trying to transmit on the CAN bus
SG	IG	OFF	NORMAL CONDITION - Trying to transmit on the CAN bus
SG	IG	SR	Trying to transmit on the CAN bus and diagnostic bit(s) set
SG	OFF	SR	Not transmitting on the CAN bus and diagnostic bit(s) set
SG	SG	SR	BUS OFF fault condition
SG	OFF	FR	Nothing to transmit on the CAN bus and major diagnostic bit(s) set

OFF = LED is OFF

SG = Solid Green

SR = Solid Red

FG = Flashing Green

FR = Flashing Red

IG = Intermittent Green

FR = Flashing Red

I/O = If AUX is Solid Green indicates that Power for I/O is Present